对下列说法谈谈你的看法:(1)某彩票的中奖机会是2%,如果我买10000张彩票一定有200张会中奖;(2)我和同学玩飞行棋游戏,我掷了20次骰子还没掷得“6点”,说明我掷得“6点”的机会-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

对下列说法谈谈你的看法:
(1)某彩票的中奖机会是2%,如果我买10000张彩票一定有200张会中奖;
(2)我和同学玩飞行棋游戏,我掷了20次骰子还没掷得“6点”,说明我掷得“6点”的机会比其他同学掷得“6点”的机会小;
(3)我们知道,抛掷一枚普通硬币得到正面和反面的机会各为50%,出就是说,虽然没人能保证抛掷1000次会得到500次正面和500次反面,但是,我敢保证得到正面的次数会非常接近得到反面的次数.
题型:解答题  难度:中档

答案

(1)不同意.频率和机会在实验次数很大时可以非常接近,但并不一定完全相等;
(2)不同意.若骰子质量分布均匀,掷得6点的次数随着抛掷次数的增多而逐渐稳定于
1
6
,实验次数较少时得到的机会估计值不可靠;
(3)这种说法是合理的.

据专家权威分析,试题“对下列说法谈谈你的看法:(1)某彩票的中奖机会是2%,如果我买1000..”主要考查你对  概率的意义,利用频率估算概率  等考点的理解。关于这些考点的“档案”如下:

概率的意义利用频率估算概率

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:利用频率估算概率

  • 在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
    注:
    (1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率;
    (2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P。
    (3)利用频率估计出的概率是近似值。