一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为.小题1:试求袋中绿球的个数;小题2:第1次从袋中任意摸出-九年级数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为.
小题1:试求袋中绿球的个数;
小题2:第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率

题型:解答题  难度:偏易

答案


小题1:设绿球的个数为x个,根据题意得:,
解得x=1     因此,袋中有绿球1个
小题2:树状图或表格(略)    (7分)
∴两次都摸到红球的概率


分析:
(1)此题的求解方法是:借助于方程求解;
(2)此题需要两步完成,所以采用树状图或者列表法都比较简单。
解答:
(1)设绿球的个数为x.由题意,得2/(2+1+X)=1/2
解得x=1,经检验x=1是所列方程的根,所以绿球有1个;
(2)根据题意,画树状图:

由图知共有12种等可能的结果,
即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿),(绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红,红),(红,红).
∴P(两次都摸到红球)=2/12=1/6;
或根据题意,画表格:
 第1次
第2次
 红1
红2 
黄 
绿 
 红1
 
 (红2,红1)
 (黄,红1)
 (绿,红1)
 红2
 (红1,红2)
 
 (黄,红2)
 (绿,红2)
 黄
 (红1,黄)
 (红2,黄)
 
 (绿,黄)
 绿
 (红1,绿)
 (红2,绿)
 (黄,绿)
 
由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种,
∴P(两次都摸到红球)=2/12=1/6。
点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两部以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比。

据专家权威分析,试题“一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红..”主要考查你对  概率的意义,随机事件,必然事件,列举法求概率  等考点的理解。关于这些考点的“档案”如下:

概率的意义随机事件必然事件列举法求概率

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:随机事件

  • 随机事件:
    事件可分为确定事件和不确定事件,不确定事件又称为随机事件。
    在一定条件下,可能发生也可能不发生的事件。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:随机事件A的概率为0<P(A)<1。

  • 随机事件特点:
    1.可以在相同的条件下重复进行;
    2.每个试验的可能结果不止一个,并且能事先预测试验的所有可能结果;
    3.进行一次试验之前不能确定哪一个结果会出现。
    注意:
    ①随机事件发生与否,事先是不能确定的;
    ②必然事件发生的机会是1;不可能事件发生的机会是0;随机事件发生的机会在0-1之间。
    ③要判断一个事件是必然事件、随机事件、还是不可能事件,要从定义出发。

考点名称:必然事件

  • 必然事件:
    事件可分为确定事件和不确定事件,确定事件可分为必然事件和不可能事件。
    在一定的条件下,一定发生的事件。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。必然事件的概率为1。

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐