将分别标有数字1,3,5的三张卡片洗匀后,背面朝上放在桌面上。(1)随机地抽取一张,求抽到数字恰好为1的概率;(2)请你通过列表或画树状图分析:随机地抽取一张作为十位上的数-九年级数学

题文

将分别标有数字1,3,5的三张卡片洗匀后,背面朝上放在桌面上。
(1)随机地抽取一张,求抽到数字恰好为1的概率;
(2)请你通过列表或画树状图分析:随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求所组成的两位数恰好是“35”的概率。
题型:解答题  难度:偏难

答案

解:(1)
(2)画树状图:

由树状图可知,所有等可能的结果共有6种,其中两位数恰好是35有1种,
∴P(35)

据专家权威分析,试题“将分别标有数字1,3,5的三张卡片洗匀后,背面朝上放在桌面上。(..”主要考查你对  利用概率解决问题,列举法求概率  等考点的理解。关于这些考点的“档案”如下:

利用概率解决问题列举法求概率

考点名称:利用概率解决问题

  • 应用概率可以解决以下问题:
    (1)彩票中奖率的问题;
    (2)抽样检测中产品合格率的问题;
    (3)天气预报降水的概率;
    (4)抛硬币、掷骰字的问题;
    (5)圆盘分几个区域,分别涂色,转到哪个颜色的区域的概率;
    (6)有刚回及无放回的摸球问题。
    概率的应用情况远不止于这些,还有很多类似情况,在解决这类问题时,要充分理解题意,找到切入点,就能轻松的解决问题。

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐