矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若抛物线经过A、D两点,试确定此抛物线的解析-九年级数学
题文
矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D. (1)求点D的坐标; (2)若抛物线经过A、D两点,试确定此抛物线的解析式; (3)设(2)中的抛物线的对称轴与直线AD交于点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标. |
答案
(1)点D的坐标为(2,3); (2) 抛物线的解析式为; (3) 符合条件的点P有两个,P1 (3,0)、P2 (3,-4). |
试题分析:(1)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出答案. (2)A、D,两点坐标已知,把它们代入二次函数解析式中,得出两个二元一次方程,联立求解可以得出答案. (3)由题目分析可以知道∠B=90°,以P、A、M为顶点的三角形与△ABD相似,所以应有∠APM、∠AMP或者∠MAP等于90°,很明显∠AMP不可能等于90°,所以有两种情况. 解:(1) ∵四边形OABC为矩形,C(0,3) ∴BC∥OA,点D的纵坐标为3. ∵直线与BC边相交于点D, ∴. ∴点D的坐标为(2,3). (2) ∵若抛物线经过A(6,0)、D(2,3)两点, ∴ 解得:∴抛物线的解析式为 (3) ∵抛物线的对称轴为x=3, 设对称轴x=3与x轴交于点P1,∴BA∥MP1, ∴∠BAD=∠AMP1. ①∵∠AP1M=∠ABD=90°,∴△ABD∽△AMP1. ∴P1 (3,0). ②当∠MAP2=∠ABD=90°时,△ABD∽△MAP2. ∴∠AP2M=∠ADB ∵AP1=AB,∠AP1 P2=∠ABD=90° ∴△AP1 P2≌△ABD ∴P1 P2=BD=4 ∵点P2在第四象限,∴P2 (3,-4). ∴符合条件的点P有两个,P1 (3,0)、P2 (3,-4). |
据专家权威分析,试题“矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:二次函数的图象如图所示,将其绕坐标原点O旋转,则旋转后的抛物线的解析式为()A.B.C.D.-九年级数学
下一篇:已知抛物线的顶点在x轴上,且与y轴交于A点.直线经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |