已知抛物线的顶点在x轴上,且与y轴交于A点.直线经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一-九年级数学
题文
已知抛物线的顶点在x轴上,且与y轴交于A点. 直线经过A、B两点,点B的坐标为(3,4). (1)求抛物线的解析式,并判断点B是否在抛物线上; (2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x.当x为何值时,h取得最大值,求出这时的h值. |
答案
(1) 不在;(2)当时,h有最大值. |
试题分析:(1)∵抛物线的顶点在x轴上, ∴. ∴b=±2. ∴抛物线的解析式为或 将B(3,4)代入,左=右, ∴点B在抛物线上. 将B(3,4)代入,左≠右, ∴点B不在抛物线上 (2)∵A点坐标为(0,1),点B坐标为(3,4),直线过A、B两点 ∴.∴ ∴. ∵点B在抛物线上. 设P、E两点的纵坐标分别为yP和yE . ∴ PE=h=yP-yE =(x+1)-(x2-2x+1) =-x2+3x. 即h=x2+3x(0<x<3). ∴当时,h有最大值 最大值为. |
据专家权威分析,试题“已知抛物线的顶点在x轴上,且与y轴交于A点.直线经过A、B两点,点..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若抛物线经过A、D两点,试确定此抛物线的解析-九年级数学
下一篇:已知二次函数y1=ax2+bx-3的图象经过点A(2,-3),B(-1,0),与y轴交于点C,与x轴另一交点交于点D.(1)求二次函数的解析式;(2)求点C、点D的坐标;(3)若一条直线y2,经过C、D两-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |