如图,二次函数的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A.D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内。(1)求二次函数的解析式;(2)设点D的坐标为(x,y),试求-九年级数学
题文
如图,二次函数的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A.D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内。 (1)求二次函数的解析式; (2)设点D的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围; (3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论。 |
答案
(1) y=-x2+2;(2)p=-(x+2)2+8,其中-2<x<2;(3)不存在,证明见解析. |
试题分析:(1)由顶点坐标(0,2)可直接代入y=-mx2+4m,求得m=,即可求得抛物线的解析式; (2)由图及四边形ABCD为矩形可知AD∥x轴,长为2x的据对值,AB的长为A点的总坐标,由x与y的关系,可求得p关于自变量x的解析式,因为矩形ABCD在抛物线里面,所以x小于0,大于抛物线与x负半轴的交点; (3)由(2)得到的p关于x的解析式,可令p=9,求x的方程,看x是否有解,有解则存在,无解则不存在,显然不存在这样的p. 试题解析:(1)∵二次函数y=-mx2+4m的顶点坐标为(0,2), ∴4m=2, 即m=, ∴抛物线的解析式为:y=-x2+2; (2)∵D点在x轴的正方向上坐标为(x,y),四边形ABCD为矩形,BC在x轴上, ∴AD∥x轴, 又由抛物线关于y轴对称, 所以D、C点关于y轴分别与A、B对称. 所以AD的长为2x,AB长为y, 所以周长p=2y+4x=2(-x2+2)-4x=-(x+2)2+8. ∵D在抛物线上,且ABCD组成矩形, ∴x<2, ∵四边形ABCD为矩形, ∴y>0, 即x>-2. 所以p=-(x+2)2+8,其中-2<x<2. (3)不存在, 证明:假设存在这样的p,即:9=-(x+2)2+8, 解此方程得:x无解,所以不存在这样的p. 考点: 二次函数综合题. |
据专家权威分析,试题“如图,二次函数的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。 - 二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。
考点名称:二次函数的图像
- 二次函数的图像
是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,抛物线的对称轴是直线x=1,且经过点P,则的值为()A.2B.1C.0D.-九年级数学
下一篇:二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根.(2)写出不等式的解集.(3)写出随的增大而减小的自变量的取值范围.(4)若方程有两个不相等的实数根,求的取-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |