已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经过点A(-3,0)和点B(0,6)。(1)求此二次函数的解析式;(2)将这个二次函数的图像向右平移5个单位后的顶点设为C,-九年级数学
题文
已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经过点A(-3,0)和点B(0,6)。(1)求此二次函数的解析式;(2)将这个二次函数的图像向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠sin∠ABD;(3)在第(2)小题的条件下,连接OC,试探究直线AB与OC的位置关系,并且说明理由。 |
答案
(1)y=-2x2-4x+6;(2)sin∠ABD=;(3)略. |
试题分析:(1)把点A、B的坐标代入函数解析式计算求出b、c的值,即可得解; (2)先求出抛物线的顶点坐标,再根据向右平移横坐标加,求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线BC的解析式,再求出与x轴的交点D的坐标,过点A作AH⊥BD于H,先求出OD,再利用勾股定理列式求出BD,然后求出△ADH和△BDO相似,利用相似三角形对应边成比例列式求出AH,再利用勾股定理,然后根据锐角的正弦等于对边比斜边列式计算即可得解; (3)过点C作CP⊥x轴于P,分别求出∠BAO和∠COP的正切值,根据正切值相等求出∠BAO=∠COP,再根据同位角相等,两直线平行解答. 试题解析:(1)由题意得, ?2×9?3b+c=0 c=6 , 解得 b=?4 c=6 , 所以,此二次函数的解析式为y=-2x2-4x+6; (2)∵y=-2x2-4x+6=-2(x+1)2+8, ∴函数y=2x2-4x+6的顶点坐标为(-1,8), ∴向右平移5个单位的后的顶点C(4,8), 设直线BC的解析式为y=kx+b(k≠0), 则, 解得 , 所以,直线BC的解析式为y=x+6, 令y=0,则x+6=0, 解得x=-12, ∴点D的坐标为(-12,0), 过点A作AH⊥BD于H, OD=12,BD=, AD=-3-(-12)=-3+12=9, ∵∠ADH=∠BDO,∠AHD=∠BOD=90°, ∴△ADH∽△BDO, ∴AH:OB ="AD:BD" , 即AH:6 =9:, 解得AH=, ∵AB=, ∴sin∠ABD=; (3)过点C作CP⊥x轴于P, 由题意得,CP=8,PO=4,AO=3,BO=6, ∴tan∠COP==2, tan∠BAO==2, ∴tan∠COP=tan∠BAO, ∴∠BAO=∠COP, ∴AB∥OC. |
据专家权威分析,试题“已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:某职业学校三名学生到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。A:如果以10元/千克的-九年级数学
下一篇:如图,小李投掷铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式为什那么铅球运动过程中最高点离地面的距离____米。-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |