已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(,0)和An(bn,0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推-九年级数学
题文
已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(,0)和An(bn,0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推. (1) 求a1、b1的值及抛物线y2的解析式; (2) 抛物线y3的顶点坐标为(____,___);依此类推第n条抛物线yn的顶点坐标为(_____,_____)(用含n的式子表示);所有抛物线的顶点坐标满足的函数关系式是_____________; (3) 探究下列结论: ①若用An-1 An表示第n条抛物线被x轴截得的线段的长,则A0A1=______,An-1 An=____________; ②是否存在经过点A1(b1,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由. |
答案
(1)a1=1,b1=2,y2=-(x-4)2+4;(2)(9,9),(n2,n2),y=x;(3)2,2n, y=x-2. |
试题分析:(1)因为点A0(0,0)在抛物线y1=-(x-a1)2+a1上,可求得a1=1,则y1=-(x-1)2+1;令y1=0,求得A1(2,0),b1=2;再由点A1(2,0)在抛物线y2=-(x-a2)2+a2上,求得a2=4,y2=-(x-4)2+4. (2)求得y1的顶点坐标(1,1),y2的顶点坐标(4,4),y3的顶点坐标(9,9),依此类推,yn的顶点坐标为(n2,n2).因为所有抛物线顶点的横坐标等于纵坐标,所以顶点坐标满足的函数关系式是:y=x. (3)①由A0(0,0),A1(2,0),求得A0A1=2;yn=-(x-n2)2+n2,令yn=0,求得An-1(n2-n,0),An(n2+n,0),所以An-1An=(n2+n)-(n2-n)=2n; ②设直线解析式为:y=kx-2k,设直线y=kx-2k与抛物线yn=-(x-n2)2+n2交于E(x1,y1),F(x2,y2)两点,联立两式得一元二次方程,得到x1+x2=2n2-k,x1?x2=n4-n2-2k.然后作辅助线,构造直角三角形,求出EF2的表述式为:EF2=(k2+1)[4n2?(1-k)+k2+8k],可见当k=1时,EF2=18为定值.所以满足条件的直线为:y=x-2. 试题解析:(1)∵当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0), ∴0=-(0-a1)2+a1,解得a1=1或a1=0. 由已知a1>0,∴a1=1, ∴y1=-(x-1)2+1. 令y1=0,即-(x-1)2+1=0,解得x=0或x=2, ∴A1(2,0),b1=2. 由题意,当n=2时,第2条抛物线y2=-(x-a2)2+a2经过点A1(2,0), ∴0=-(2-a2)2+a2,解得a2=1或a2=4, ∵a1=1,且已知a2>a1, ∴a2=4, ∴y2=-(x-4)2+4. ∴a1=1,b1=2,y2=-(x-4)2+4. (2)抛物线y2=-(x-4)2+4,令y2=0,即-(x-4)2+4=0,解得x=2或x=6. ∵A1(2,0), ∴A2(6,0). 由题意,当n=3时,第3条抛物线y3=-(x-a3)2+a3经过点A2(6,0), ∴0=-(6-a3)2+a3,解得a3=4或a3=9. ∵a2=4,且已知a3>a2, ∴a3=9, ∴y3=-(x-9)2+9. ∴y3的顶点坐标为(9,9). 由y1的顶点坐标(1,1),y2的顶点坐标(4,4),y3的顶点坐标(9,9), 依此类推,yn的顶点坐标为(n2,n2). ∵所有抛物线顶点的横坐标等于纵坐标, ∴顶点坐标满足的函数关系式是:y=x. (3)①∵A0(0,0),A1(2,0), ∴A0A1=2.yn=-(x-n2)2+n2,令yn=0,即-(x-n2)2+n2=0, 解得x=n2+n或x=n2-n, ∴An-1(n2-n,0),An(n2+n,0),即An-1An=(n2+n)-(n2-n)=2n. ②存在. 设过点(2,0)的直线解析式为y=kx+b,则有:0=2k+b,得b=-2k, ∴y=kx-2k. 设直线y=kx-2k与抛物线yn=-(x-n2)2+n2交于E(x1,y1),F(x2,y2)两点, 联立两式得:kx-2k=-(x-n2)2+n2,整理得:x2+(k-2n2)x+n4-n2-2k=0, ∴x1+x2=2n2-k,x1?x2=n4-n2-2k. 过点F作FG⊥x轴,过点E作EG⊥FG于点G,则EG=x2-x1, FG=y2-y1=[-(x2-n2)2+n2]-[-(x1-n2)2+n2]=(x1+x2-2n2)(x1-x2)=k(x2-x1). 在Rt△EFG中,由勾股定理得:EF2=EG2+FG2, 即:EF2=(x2-x1)2+[k(x2-x1)]2=(k2+1)(x2-x1)2=(k2+1)[(x1+x2)2-4x1?x2], 将x1+x2=2n2-k,x1?x2=n4-n2-2k代入,整理得:EF2=(k2+1)[4n2?(1-k)+k2+8k], 当k=1时,EF2=(1+1)(1+8)=18, ∴EF=3为定值, ∴k=1满足条件,此时直线解析式为y=x-2. ∴存在满足条件的直线,该直线的解析式为y=x-2. 考点: 二次函数综合题. |
据专家权威分析,试题“已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个-九年级数学
下一篇:如图,点是半圆的半径上的动点,作于.点是半圆上位于左侧的点,连结交线段于,且.(1)求证:是⊙O的切线.(2)若⊙O的半径为,,设.①求关于的函数关系式.②当时,求的值.-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |