如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述-九年级数学
题文
如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F. (1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明); (2)如图2,若点E在线段BC上滑动(不与点B,C重合). ①AE=EF是否总成立?请给出证明; ②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标. |
答案
(1)△AGE与△ECF全等 ①AE=EF,证明见解析 ②F(,?1) |
(1)取AB的中点G,连接EG,利用ASA能得到△AGE与△ECF全等; (2)①在AB上截取AM=EC,证得△AME≌△ECF即可证得AE=EF; ②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,则FH=a-1,然后表示出点F的坐标,根据点F恰好落在抛物线y=-x2+x+1上得到有关a的方程求得a值即可求得点F的坐标; (1)解:如图1,取AB的中点G,连接EG. △AGE与△ECF全等. (2)①若点E在线段BC上滑动时AE=EF总成立. 证明:如图2,在AB上截取AM=EC. ∵AB=BC, ∴BM=BE, ∴△MBE是等腰直角三角形, ∴∠AME=180°-45°=135°, 又∵CF平分正方形的外角, ∴∠ECF=135°, ∴∠AME=∠ECF. 而∠BAE+∠AEB=∠CEF+∠AEB=90°, ∴∠BAE=∠CEF, ∴△AME≌△ECF. ∴AE=EF. ②过点F作FH⊥x轴于H, 由①知,FH=BE=CH, 设BH=a,则FH=a-1, ∴点F的坐标为F(a,a-1) ∵点F恰好落在抛物线y=-x2+x+1上, ∴a-1=-a2+a+1, ∴a2=2,a=±(负值不合题意,舍去), ∴a?1=?1. ∴点F的坐标为F(,?1). |
据专家权威分析,试题“如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且E..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。 - 二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。
考点名称:二次函数的图像
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图1,在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6.现有两动点P、Q分别从A、C两点同时出发,点P以每秒1个单位长的速度由点A向点D做匀速运动,点Q沿折线CB—BA向点A做匀-九年级数学
下一篇:如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c(a≠0)上.(1)求抛物线的解析式.(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |