已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若m为整数,当此方程有两个互不相等的负整数根时,求m的值;(3)在(2)的条件下,设抛物线与x轴交点为A、B(点B在点A的-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-21 / 加入收藏 / 阅读 [打印]

题文

已知关于的一元二次方程
(1)求证:方程总有两个实数根;
(2)若m为整数,当此方程有两个互不相等的负整数根时,求m的值;
(3)在(2)的条件下,设抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.点O为坐标原点,点P在直线BC上,且OP=BC,求点P的坐标.

题型:解答题  难度:中档

答案

(1)证明见解析;(2)1;(3)


试题分析:(1)证明一元二次方程根的判别式大于等于0即可.
(2)解一元二次方程,根据方程有两个互不相等的负整数根列不等式求解即可.
(3)求出BC的长,由OP=BC求得OP;应用待定系数法求出BC 的解析式,从而由点P在直线BC上,设,应用勾股定理即可求得点P的坐标.
(1)∵≥0,
∴方程总有两个实数根.
(2)∵

∵方程有两个互不相等的负整数根,
.∴.∴
∵m为整数,∴m=1或2或3.
当m=1时,,符合题意;
当m=2时,,不符合题意;
当m=3时,,但不是整数,不符合题意.
∴m=1.
(3)m=1时,抛物线解析式为
,得;令x=0,得y=3.
∴A(-3,0),B(-1,0),C(0,3).∴
∴OP=BC
设直线BC的解析式为
 ,∴.
∴直线BC的解析式为
,由勾股定理有:
整理,得 ,解得

据专家权威分析,试题“已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若m为整..”主要考查你对  二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用  等考点的理解。关于这些考点的“档案”如下:

二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用

考点名称:二次函数的定义

  • 定义:
    一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐