如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1.(1)求a,b,c的值;(2)如果动点E,F同时分-九年级数学
题文
如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1. (1)求a,b,c的值; (2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S. ①试求出S与t之间的函数关系式,并求出S的最大值; ②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由. |
答案
(1),,;(2)s=-(t-3)2+,; (9,3). |
试题分析:(1)由于四边形OABC是正方形,易知点A的坐标,将A、B的坐标分别代入抛物线的解析式中,联立3a-b=-1,即可求得待定系数的值. (2)①用t分别表示出BE、BF的长,利用直角三角形面积公式求出△EBF的面积,从而得到关于S、t的函数关系式,根据函数的性质即可求得S的最大值; ②当S取最大值时,即可确定BE、BF的长,若E、B、R、F为顶点的四边形是平行四边形,可有两种情况:一、EB平行且相等于FR,二、ER平行且相等于FB;只需将E点坐标向上、向下平移BF个单位或将F点坐标向左、向右平移BE个单位,即可得到R点坐标,然后将它们代入抛物线的解析式中进行验证,找出符合条件的R点即可. (1)由已知A(0,6),B(6,6)在抛物线上, 得方程组,解得. (2)①运动开始t秒时,EB=6-t,BF=t, S=EB?BF=(6-t)t=-t2+3t, 以为S=-t2+3t=-(t-3)2+, 所以当t=3时,S有最大值. ②当S取得最大值时, ∵由①知t=3, ∴BF=3,CF=3,EB=6-3=3, 若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形, 则FR1=EB且FR1∥EB, 即可得R1为(9,3),R2(3,3); 或者ER3=BF,ER3∥BF,可得R3(3,9). 再将所求得的三个点代入y=-x2+x+6,可知只有点(9,3)在抛物线上, 因此抛物线上存在点R(9,3),使得四边形EBRF为平行四边形. |
据专家权威分析,试题“如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:已知抛物线,(1)若求该抛物线与x轴的交点坐标;(2)若,证明抛物线与x轴有两个交点;(3)若且抛物线在区间上的最小值是-3,求b的值.-九年级数学
下一篇:将抛物线-1的图像向左平移2个单位,再向上平移1个单位,所得抛物线.-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |