如图①,已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图②,当S取最大值时,等腰梯形ABCD的四个顶点-九年级数学
题文
如图①,已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x. (1)用x表示AD和CD; (2)用x表示S,并求S的最大值; (3)如图②,当S取最大值时,等腰梯形ABCD的四个顶点都在⊙O上,点E和点F分别是AB和CD的中点,求⊙O的半径R的值. |
答案
(1)AD=18-2x,CD=16+x;(2)S=-2(x-2)2+72,当x=2时,S有最大值72;(3)R=2. |
试题分析:(1)作AH⊥CD于H,BG⊥CD于G,如图①,易得四边形AHGB为矩形,则HG=AB=3x,再根据等腰梯形的性质得AD=BC,DH=CG,在Rt△ADH中,设DH=t,根据含30度的直角三角形三边的关系得AD=2t,AH=t,然后根据等腰梯形ABCD的周长为48得3x+2t+t+3x+t+2t=48,解得t=8-x,于是可得AD=18-2x,CD=16+x; (2)根据梯形的面积公式计算可得到S=-2x2+8x+64,再进行配方得S=-2(x-2)2+72,然后根据二次函数的最值问题求解; (3)连结OA、OD,如图②,由(2)得到x=2时,则AB=6,CD=18,等腰梯形的高为6,所以AE=3,DF=9,由于点E和点F分别是AB和CD的中点,根据等腰梯形的性质得直线EF为等腰梯形ABCD的对称轴,所以EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6,根据垂径定理的推论得等腰梯形ABCD的外接圆的圆心O在EF上,设OE=a,则OF=6-a,在Rt△AOE中,利用勾股定理得a2+32=R2,在Rt△ODF中,利用勾股定理得(6-a)2+92=R2,然后消去R得到a的方程a2+32=(6-a)2+92,解得a=5,最后利用R2=(5)2+32求解. 试题解析:(1)作AH⊥CD于H,BG⊥CD于G,如图①, 则四边形AHGB为矩形, ∴HG=AB=3x, ∵四边形ABCD为等腰梯形, ∴AD=BC,DH=CG, 在Rt△ADH中,设DH=t, ∵∠ADC=60°, ∴∠DAH=30°, ∴AD=2t,AH=t, ∴BC=2t,CG=t, ∵等腰梯形ABCD的周长为48, ∴3x+2t+t+3x+t+2t=48,解得t=8-x, ∴AD=2(8-x)=18-2x, CD=8-x+3x+8-x=16+x; (2)S=(AB+CD)?AH =(3x+16+x)?(8-x) =-2x2+8x+64, ∵S=-2(x-2)2+72, ∴当x=2时,S有最大值72; (3)连结OA、OD,如图②, 当x=2时,AB=6,CD=16+2=18,等腰梯形的高为×(8-2)=6, 则AE=3,DF=9, ∵点E和点F分别是AB和CD的中点, ∴直线EF为等腰梯形ABCD的对称轴, ∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6, ∴等腰梯形ABCD的外接圆的圆心O在EF上, 设OE=a,则OF=6-a, 在Rt△AOE中, ∵OE2+AE2=OA2, ∴a2+32=R2, 在Rt△ODF中, ∵OF2+DF2=OD2, ∴(6-a)2
上一篇:如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC-九年级数学
下一篇:如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次-九年级数学
零零教育社区:论坛热帖子
|