如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛-九年级数学
题文
如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高. (1)抛物线y=x2对应的碟宽为 ;抛物线y=4x2对应的碟宽为 ;抛物线y=ax2(a>0)对应的碟宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为 ; (2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值; (3)将抛物线y=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3…),定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn﹣1的相似比为,且Fn的碟顶是Fn﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1. ①求抛物线y2的表达式; ②若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn,则hn= ,Fn的碟宽有端点横坐标为 2 ;F1,F2,…,Fn的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由. |
答案
(1)4;1;;. |
试题分析:(1)根据定义可算出y=ax2(a>0)的碟宽为、碟高为,由于抛物线可通过平移y=ax2(a>0)得到,得到碟宽为、碟高为,由此可得碟宽、碟高只与a有关,与别的无关,从而可得. (2)由(1)的结论,根据碟宽易得a的值. (3)①根据y1,容易得到y2. ②结合画图,易知h1,h2,h3,…,hn﹣1,hn都在直线x=2上,可以考虑hn∥hn﹣1,且都过Fn﹣1的碟宽中点,进而可得.画图时易知碟宽有规律递减,由此可得右端点的特点.对于“F1,F2,…,Fn的碟宽右端点是否在一条直线上?”,我们可以推测任意相邻的三点是否在一条直线上,如果相邻的三个点不共线则结论不成立,反之则成立,所以可以考虑基础的几个图形关系,利用特殊点求直线方程即可. 试题解析:(1)4;1;;. ∵a>0, ∴y=ax2的图象大致如下: 其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB. ∵△DAB为等腰直角三角形,AB∥x轴, ∴OC⊥AB, ∴∠OCA=∠OCB=∠AOB=×90°=45°, ∴△ACO与△BCO亦为等腰直角三角形, ∴AC=OC=BC, ∴xA=-yA,xB=yB,代入y=ax2, ∴A(﹣,),B(,),C(0,), ∴AB=,OC=, 即y=ax2的碟宽为. ①抛物线y=x2对应的a=,得碟宽为4; ②抛物线y=4x2对应的a=4,得碟宽为为; ③抛物线y=ax2(a>0),碟宽为; ④抛物线y=a(x﹣2)2+3(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形, ∵平移不改变形状、大小、方向, ∴抛物线y=a(x﹣2)2
上一篇:在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2-九年级数学
下一篇:如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操-八年级数学
零零教育社区:论坛热帖子
|