如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-21 / 加入收藏 / 阅读 [打印]

题文

如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.
(1)抛物线y=x2对应的碟宽为   ;抛物线y=4x2对应的碟宽为   ;抛物线y=ax2(a>0)对应的碟宽为  ;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为  
(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;
(3)将抛物线y=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3…),定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn﹣1的相似比为,且Fn的碟顶是Fn﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1
①求抛物线y2的表达式;
②若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn,则hn=  ,Fn的碟宽有端点横坐标为 2 ;F1,F2,…,Fn的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.

题型:解答题  难度:偏难

答案

(1)4;1;


试题分析:(1)根据定义可算出y=ax2(a>0)的碟宽为、碟高为,由于抛物线可通过平移y=ax2(a>0)得到,得到碟宽为、碟高为,由此可得碟宽、碟高只与a有关,与别的无关,从而可得.
(2)由(1)的结论,根据碟宽易得a的值.
(3)①根据y1,容易得到y2
②结合画图,易知h1,h2,h3,…,hn﹣1,hn都在直线x=2上,可以考虑hn∥hn﹣1,且都过Fn﹣1的碟宽中点,进而可得.画图时易知碟宽有规律递减,由此可得右端点的特点.对于“F1,F2,…,Fn的碟宽右端点是否在一条直线上?”,我们可以推测任意相邻的三点是否在一条直线上,如果相邻的三个点不共线则结论不成立,反之则成立,所以可以考虑基础的几个图形关系,利用特殊点求直线方程即可.
试题解析:(1)4;1;
∵a>0,
∴y=ax2的图象大致如下:

其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.
∵△DAB为等腰直角三角形,AB∥x轴,
∴OC⊥AB,
∴∠OCA=∠OCB=∠AOB=×90°=45°,
∴△ACO与△BCO亦为等腰直角三角形,
∴AC=OC=BC,
∴xA=-yA,xB=yB,代入y=ax2
∴A(﹣),B(),C(0,),
∴AB=,OC=
即y=ax2的碟宽为
①抛物线y=x2对应的a=,得碟宽为4;
②抛物线y=4x2对应的a=4,得碟宽为
③抛物线y=ax2(a>0),碟宽为
④抛物线y=a(x﹣2)2+3(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,
∵平移不改变形状、大小、方向,
∴抛物线y=a(x﹣2)2
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐