如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操-八年级数学
题文
如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合). 第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G; 第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H; 依次操作下去… (1)图2中的△EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长; (2)若经过三次操作可得到四边形EFGH. ①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ; ②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围; (3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由. |
答案
(1)△DEF为等边三角形,EF的长为4﹣4. (2)①四边形EFGH的形状为正方形,此时AE=BF. ②y=2x2﹣8x+16(0<x<4),y的取值范围为:8≤y<16. (3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4. |
试题分析:(1)根据旋转的性质,易知△EFD是等边三角形;利用等边三角形的性质、勾股定理即求出EF的长; (2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF; ②求出面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围. (3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4 试题解析:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形. 在Rt△ADE与Rt△CDF中, ∴Rt△ADE≌Rt△CDF(HL) ∴AE=CF. 设AE=CF=x,则BE=BF=4﹣x ∴△BEF为等腰直角三角形. ∴EF=BF=(4﹣x). ∴DE=DF=EF=(4﹣x). 在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2, 解得:x1=8﹣4,x2=8+4(舍去) ∴EF=(4﹣x)=4﹣4. DEF的形状为等边三角形,EF的长为4﹣4. (2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下: 依题意画出图形,如答图1所示: 由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形. ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3. ∵∠3+∠4=90°,∠2+∠3=90°, ∴∠2=∠4. ∵EF=EH ∴△AEH≌△BFE(ASA) ∴AE=BF. ②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形, ∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x. ∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16. ∴y=2x2﹣8x+16(0<x<4) ∵y=2x2﹣8x+16=2(x﹣2)2+8, ∴当x=2时,y取得最小值8;当x=0时,y=16, ∴y的取值范围为:8≤y<16. (3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4. 如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形. 设边长EF=FG=x,则BF=CG=x, BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4. |
据专家权威分析,试题“如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛-九年级数学
下一篇:已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.-八年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |