如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛-九年级数学
+3(a>0)的准碟形与抛物线y=ax2的准碟形全等,
∵抛物线y=ax2(a>0),碟宽为,
∴抛物线y=a(x﹣2)2+3(a>0),碟宽为.
(2)∵y=ax2﹣4ax﹣,
∴由(1),其碟宽为,
∵y=ax2﹣4ax﹣的碟宽为6,
∴=6,
解得A=,
∴y=x2﹣x﹣=(x﹣2)2﹣3
(3)①∵F1的碟宽:F2的碟宽=2:1,
∴=,
∵a1=,
∴a2=.
∵y=(x﹣2)2﹣3的碟宽AB在x轴上(A在B左边),
∴A(﹣1,0),B(5,0),
∴F2的碟顶坐标为(2,0),
∴y2=(x﹣2)2.
②∵Fn的准碟形为等腰直角三角形,
∴Fn的碟宽为2hn,
∵2hn:2hn﹣1=1:2,
∴hn=hn﹣1=()2hn﹣2=()3hn﹣3=…=()n+1h1,
∵h1=3,
∴hn=.
∵hn∥hn﹣1,且都过Fn﹣1的碟宽中点,
∴h1,h2,h3,…,hn﹣1,hn都在一条直线上,
∵h1在直线x=2上,
∴h1,h2,h3,…,hn﹣1,hn都在直线x=2上,
∴Fn的碟宽右端点横坐标为2+.
另,F1,F2,…,Fn的碟宽右端点在一条直线上,直线为y=﹣x+5.
分析如下:
考虑Fn﹣2,Fn﹣1,Fn情形,关系如图2,
Fn﹣2,Fn﹣1,Fn的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.
∵AB∥x轴,DE∥x轴,GH∥x轴,
∴AB∥DE∥GH,
∴GH平行且等于FE,DE平行且等于CB,
∴四边形GFEH,四边形DCBE都为平行四边形,
∴HE∥GF,EB∥DC,
∵∠GFI=∠GFH=∠DCE=∠DCF,
∴GF∥DC,
∴HE∥EB,
∵HE,EB都过E点,
∴HE,EB在一条直线上,
∴Fn﹣2,Fn﹣1,Fn的碟宽的右端点是在一条直线,
∴F1,F2,…,Fn的碟宽的右端点是在一条直线.
∵F1:y1=(x﹣2)2﹣3准碟形右端点坐标为(5,0),
F2:y2=(x﹣2)2准碟形右端点坐标为(2+,),
∴待定系数可得过两点的直线为y=﹣x+5,
∴F1,F2,…,Fn的碟宽的右端点是在直线y=﹣x+5上.
∵抛物线y=ax2(a>0),碟宽为,
∴抛物线y=a(x﹣2)2+3(a>0),碟宽为.
(2)∵y=ax2﹣4ax﹣,
∴由(1),其碟宽为,
∵y=ax2﹣4ax﹣的碟宽为6,
∴=6,
解得A=,
∴y=x2﹣x﹣=(x﹣2)2﹣3
(3)①∵F1的碟宽:F2的碟宽=2:1,
∴=,
∵a1=,
∴a2=.
∵y=(x﹣2)2﹣3的碟宽AB在x轴上(A在B左边),
∴A(﹣1,0),B(5,0),
∴F2的碟顶坐标为(2,0),
∴y2=(x﹣2)2.
②∵Fn的准碟形为等腰直角三角形,
∴Fn的碟宽为2hn,
∵2hn:2hn﹣1=1:2,
∴hn=hn﹣1=()2hn﹣2=()3hn﹣3=…=()n+1h1,
∵h1=3,
∴hn=.
∵hn∥hn﹣1,且都过Fn﹣1的碟宽中点,
∴h1,h2,h3,…,hn﹣1,hn都在一条直线上,
∵h1在直线x=2上,
∴h1,h2,h3,…,hn﹣1,hn都在直线x=2上,
∴Fn的碟宽右端点横坐标为2+.
另,F1,F2,…,Fn的碟宽右端点在一条直线上,直线为y=﹣x+5.
分析如下:
考虑Fn﹣2,Fn﹣1,Fn情形,关系如图2,
Fn﹣2,Fn﹣1,Fn的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.
∵AB∥x轴,DE∥x轴,GH∥x轴,
∴AB∥DE∥GH,
∴GH平行且等于FE,DE平行且等于CB,
∴四边形GFEH,四边形DCBE都为平行四边形,
∴HE∥GF,EB∥DC,
∵∠GFI=∠GFH=∠DCE=∠DCF,
∴GF∥DC,
∴HE∥EB,
∵HE,EB都过E点,
∴HE,EB在一条直线上,
∴Fn﹣2,Fn﹣1,Fn的碟宽的右端点是在一条直线,
∴F1,F2,…,Fn的碟宽的右端点是在一条直线.
∵F1:y1=(x﹣2)2﹣3准碟形右端点坐标为(5,0),
F2:y2=(x﹣2)2准碟形右端点坐标为(2+,),
∴待定系数可得过两点的直线为y=﹣x+5,
∴F1,F2,…,Fn的碟宽的右端点是在直线y=﹣x+5上.
据专家权威分析,试题“如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2-九年级数学
下一篇:如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操-八年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |