如图1,Rt△ABC中,∠A=90°,tanB=,点P在线段AB上运动,点Q、R分别在线段BC、AC上,且使得四边形APQR是矩形,设AP的长为x,矩形APQR的面积为y,已知y是x的函数,其图象是过点-九年级数学

题文

如图1,Rt△ABC中,∠A=90°,tanB=,点P在线段AB上运动,点Q、R分别在线段BC、AC上,且使得四边形APQR是矩形,设AP的长为x,矩形APQR的面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示)。

(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值。
为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论:
张明:图2中的抛物线过点(12,36)在图1中表示什么呢?
李明:因为抛物线上的点(x,y)是表示图1中AP的长与矩形APQR面积的对应关系,那么,(12,36)表示当AP=12时,AP的长与矩形APQR面积的对应关系。
赵明:对,我知道纵坐标36是什么意思了!
孔明:哦,这样就可以算出AB,这个问题就可以解决了。
请根据上述对话,帮他们解答这个问题。
题型:计算题  难度:中档

答案

解:(1)当时,


又在中,



(2)若,则

整理得
∴ 当时,

据专家权威分析,试题“如图1,Rt△ABC中,∠A=90°,tanB=,点P在线段AB上运动,点Q、R分别..”主要考查你对  二次函数的最大值和最小值,解直角三角形  等考点的理解。关于这些考点的“档案”如下:

二次函数的最大值和最小值解直角三角形

考点名称:二次函数的最大值和最小值

  • 二次函数的最值:
    1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
    当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
    也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
    2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2 。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐