已知抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,-)和(m-b,m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0。(1)求c的值;(2)设抛物线y=ax2+bx+c与x轴-九年级数学
题文
已知抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,-)和(m-b,m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0。 |
(1)求c的值; (2)设抛物线y=ax2+bx+c与x轴的两个交点是(x1,0)和(x2,0),求x1x2的值; (3)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值。 |
答案
解:(1)∵(0,-)在y=ax2+bx+c上, |