设二次函数y=(a+b)x2+2cx-(a-b),其中a、b、c是△ABC的三边的长,且b≥a,b≥c,已知x=-12时,这函数有最小值为-a2,则a,b,c的大小关系是()A.b≥a>cB.b≥c>aC.a=b=cD.不确定-数学

题文

设二次函数y=(a+b)x2+2cx-(a-b),其中a、b、c是△ABC的三边的长,且b≥a,b≥c,已知x=-时,这函数有最小值为-,则a,b,c的大小关系是(  )
A.b≥a>c B.b≥c>a C.a=b=c D.不确定
题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“设二次函数y=(a+b)x2+2cx-(a-b),其中a、b、c是△ABC的三边的长,..”主要考查你对  二次函数的最大值和最小值,三角形的三边关系  等考点的理解。关于这些考点的“档案”如下:

二次函数的最大值和最小值三角形的三边关系

考点名称:二次函数的最大值和最小值

  • 二次函数的最值:
    1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
    当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
    也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
    2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2 。

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐