如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2。将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置-九年级数学

题文

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2。将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H。

(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由。
题型:解答题  难度:偏难

答案

解:(1)由直角三角形纸板的两直角边的长为1和2,
知A,C两点的坐标分别为(1,2),(2,1),
设直线AC所对应的函数关系式为y=kx+b,
,解得:
所以,直线AC所对应的函数关系式为y=-x+3。

(2)①点M到x轴距离h与线段BH的长总相等,
因为点C的坐标为(2,1),
所以,直线OC所对应的函数关系式为
又因为点P在直线AC上,所以可设点P的坐标为(a,3-a),
过点M作x轴的垂线,设垂足为点K,则有MK=h,
因为点M在直线OC上,所以有M(2h,h),
因为纸板为平行移动,故有EF∥OB,即EF∥GH,
又EF⊥PF,所以PH⊥GH。

从而有
化简,得

所以

所以,化简,得

从而总有
②由①知,点M的坐标为,点N的坐标为

   
   
所以,当时,S有最大值,最大值为
S取最大值时点P的坐标为

据专家权威分析,试题“如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别..”主要考查你对  求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐