已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac。(1)求抛物线的解析式;(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说-九年级数学
题文
已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac。 |
(1)求抛物线的解析式; (2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标; (3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系? |
答案
解:(1)由抛物线过B(0,1) 得c=1, 又b=-4ac,顶点A(-,0), ∴-==2c=2,∴A(2,0), 将A点坐标代入抛物线解析式,得4a+2b+1=0, ∴, 解得:a=,b=-1, 所以,抛物线的解析式为y=x2-x+1。 |
|
(2)假设符合题意的点C存在,其坐标为C(x,y), 作CD⊥x轴于D ,连接AB、AC, ∵A在以BC为直径的圆上, ∴∠BAC=90°, ∴△AOB∽△CDA, ∴OB·CD=OA·AD, 即1·y=2(x-2), ∴y=2x-4, 由, 解得:x1=10,x2=2, ∴符合题意的点C存在,且坐标为(10,16)或(2,0), ∵P为圆心,∴P为BC的中点, 当点C坐标为 (10,16)时,取OD中点P1,连结PP1, 则PP1为梯形OBCD中位线, ∴PP1=(OB+CD)=, ∵D (10,0),∴P1 (5,0),∴P (5,); 当点C坐标为 (2,0)时, 取OA中点P2,连结PP2, 则PP2为△OAB的中位线, ∴PP2=OB=, ∵A(2,0),∴P2(1,0),∴P(1,), 故点P的坐标为(5,)或(1,)。 |
|
(3)设B、P、C三点的坐标为B(x1,y1),P(x2,y2),C(x3,y3), 由(2)可知:。 |
据专家权威分析,试题“已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且..”主要考查你对 求二次函数的解析式及二次函数的应用,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |