全国第十届数学教育方法论暨MM课题实施20周年纪念活动于9月27在无锡市一中拉开帷幕,与会期间全国数十位老师上了精彩纷呈的展示课,其中青岛一位老师的“折纸”课,武汉的裴光-九年级数学
题文
全国第十届数学教育方法论暨MM课题实施20周年纪念活动于9月27在无锡市一中拉开帷幕,与会期间全国数十位老师上了精彩纷呈的展示课,其中青岛一位老师的“折纸”课,武汉的裴光亚教授评价是:“栩栩如生,五彩缤纷”,课堂上老师提出这样一个问题:你能用手中的矩形纸片尽可能大的折出一个菱形吗?有两位同学很快折出了各自不同的菱形,如下图: |
(1)如果该矩形纸片的长为4,宽为3,则甲、乙两图中的菱形面积分别为: _______; (2)这时老师说,这两位同学折出的菱形都不是最大的,聪明的你能够想出最大的菱形应该怎样折出来吗?如下图所示:在矩形ABCD中,设AB=3,AD=4,请你在图中画出面积最大的菱形的示意图,标注上适当的字母,并求出这个菱形的面积。 |
(3)借题发挥:如图,在矩形ABCD中,AB=2,AD=3,若折叠该矩形,使得点D与AB边的中点E重合,折痕交AD于点F,交BC于点G,边DC折叠后与BC交于点M,试求:△EBM的面积。 |
答案
解:(1)6和9; | |
(2)如图:(以BD或 AC为对角线,E、F在AD,BC上,且EF垂直平分BD或AC) 注意:只要画出图形,不必写画法, 如图 设线段ED的长为x ∵ 四边形BFDE是菱形 ∴ED=BE=x 又∵矩形ABCD中 AB=3,AD=4 ∴AE=4-x 在Rt△ABE中 AE2+AB2=BE2 ∴ 解之得:x= ∴ED= ∴; |
|
(3)如图 ∵ 对折 ∴DF=EF 设线段DF的长为x,则EF=x ∵AD=3 ∴AF=3-x ∵点E是AB的中点,且AB=2 ∴AE=BE=1 ∴ 在Rt△AEF中有 ∴ 解之得:x= ∴AF= 在矩形ABCD中由于对折 ∴∠D=∠FEM=90° ∴∠1+∠2=90° 又∵∠A=∠B=90° ∴∠1+∠3=90° ∴∠2=∠3 ∴ ∴ ∴BM= ∴。 |
据专家权威分析,试题“全国第十届数学教育方法论暨MM课题实施20周年纪念活动于9月27在无..”主要考查你对 求二次函数的解析式及二次函数的应用,轴对称,矩形,矩形的性质,矩形的判定,菱形,菱形的性质,菱形的判定,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用轴对称矩形,矩形的性质,矩形的判定菱形,菱形的性质,菱形的判定相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |