已知:抛物线经过坐标原点。(1)求抛物线的解析式和顶点B的坐标;(2)设点A是抛物线与x轴的另一个交点,试在y轴上确定一点P,使PA+PB最短,并求出点P的坐标;(3)过点A作AC∥BP交-九年级数学
题文
已知:抛物线经过坐标原点。 (1)求抛物线的解析式和顶点B的坐标; (2)设点A是抛物线与x轴的另一个交点,试在y轴上确定一点P,使PA+PB最短,并求出点P的坐标; (3)过点A作AC∥BP交y轴于点C,求到直线AP、AC、CP距离相等的点的坐标。 |
答案
解:(1)∵抛物线经过坐标原点, ∴k2+k=0, 解得:k1=0,k2=-1, ∵k≠0 ∴k=-1 ∴, ∴ (2)令y=0,得, 解得:x1=0,x2=, ∴, A关于y轴的对称点C的坐标是, 联结A′B,直线A′B与y轴的交点即为所求点P, 可求得直线的解析式:, ∴P(0,2); (3)到直线AP、AC、CP距离相等的点有四个, 如图,由勾股定理得PC=PA=AC=4,所以△PAC为等边三角形, 易证x轴所在直线平分∠PAC,BP是△PAC的一个外角的平分线,作∠PCA的平分线,交x轴于点M1,交过A点的平行线于y轴的直线于点M2,作△PAC的∠PCA相邻外角的平分线,交AM2于点M3,反向延长CM3交x轴于点M4,可得点M1、M2、M3、M4就是到直线AP、AC、CP距离相等的点,可证△APM2、△ACM3、△PCM4均为等边三角形,可求得: ①,所以点M1的坐标为; ②,所以点M2的坐标为; ③点M3与点M2关于x轴对称,所以点M3的坐标为; ④点M4与点A关于y轴对称,所以点M4的坐标为, 综上所述,到直线AP、AC、CP距离相等的点的坐标分别为,,,。 |
据专家权威分析,试题“已知:抛物线经过坐标原点。(1)求抛物线的解析式和顶点B的坐标;(..”主要考查你对 求二次函数的解析式及二次函数的应用,平行线的性质,平行线的公理,等腰三角形的性质,等腰三角形的判定,轴对称,角平分线的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用平行线的性质,平行线的公理等腰三角形的性质,等腰三角形的判定轴对称角平分线的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |