已知二次函数y=ax2+bx-(a≠0)的图象经过点(1,0),和(-3,0),反比例函数y1=(x>0)的图象经过点(1,2)。(1)求这两个二次函数的解析式,并在给定的直角坐标系中作出这两个函数的-九年级数学

。过反比例函数过一点,作垂线,三角形的面积为
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为

  • 不同象限分比例函数图像:


    常见画法:

  • 考点名称:二次函数的图像

    • 二次函数的图像
      是一条关于对称的曲线,这条曲线叫抛物线。
      抛物线的主要特征:
      ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
      ②有对称轴;
      ③有顶点;
      ④c 表示抛物线与y轴的交点坐标:(0,c)。

    • 二次函数图像性质:
      轴对称:

      二次函数图像是轴对称图形。对称轴为直线x=-b/2a
      对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
      特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
      a,b同号,对称轴在y轴左侧
      b=0,对称轴是y轴
      a,b异号,对称轴在y轴右侧

      顶点:
      二次函数图像有一个顶点P,坐标为P ( h,k )
      当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
      h=-b/2a, k=(4ac-b^2)/4a。

      开口:
      二次项系数a决定二次函数图像的开口方向和大小。
      当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
      |a|越大,则二次函数图像的开口越小。

    • 决定对称轴位置的因素:
      一次项系数b和二次项系数a共同决定对称轴的位置。
      当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
      当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
      可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
      事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

      决定与y轴交点的因素:

      常数项c决定二次函数图像与y轴交点。
      二次函数图像与y轴交于(0,C)
      注意:顶点坐标为(h,k), 与y轴交于(0,C)。

      与x轴交点个数:
      a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
      k=0时,二次函数图像与x轴只有1个交点。
      a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
      当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
      当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
      当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐