如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,-九年级数学

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 考点名称:平行线的性质,平行线的公理

    • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
      推论(平行线的传递性):平行同一直线的两直线平行。
      ∵a∥c,c ∥b
      ∴a∥b。

      平行线的性质:
      1. 两条平行被第三条直线所截,同位角相等。
      简单说成:两直线平行,同位角相等。
      2. 两条平行线被第三条直线所截,内错角相等。
      简单说成:两直线平行,内错角相等。
      3 . 两条平行线被第三条直线所截,同旁内角互补。
      简单说成:两直线平行,同旁内角互补。

    • 平行线的性质公理注意:
      ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
      ②平行公理体现了平行线的存在性和唯一性;
      ③平行公理的推论体现了平行线的传递性。
      ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

    考点名称:勾股定理

    • 勾股定理:
      直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
      勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。

    • 定理作用
      ⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
      ⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
      ⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
      ⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。

    • 勾股定理的应用:
      数学
      从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
      勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。

      生活
      勾股定理在生活中的应用也较广泛,举例说明如下:
      1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:
      第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;
      第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;
      第三,屏幕底部应离观众席所在地面最少122厘米。
      屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。
      2、2005年珠峰高度复测行动。
      测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。
      通俗来说,就是分三步走:
      第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;
      第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;
      第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。

    考点名称:解直角三角形

    • 概念:
      在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。

      解直角三角形的边角关系:
      在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,
      (1)三边之间的关系:(勾股定理);
      (2)锐角之间的关系:∠A+∠B=90°;
      (3)边角之间的关系:

    • 解直角三角形的函数值:

      锐角三角函数:
      sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a
      (1)互余角的三角函数值之间的关系:
      若∠ A+∠ B=90°,那么sinA=cosB或sinB=cosA
      (2)同角的三角函数值之间的关系:
      ①sin2A+cos2A=1
      ②tanA=sinA/cosA
      ③tanA=1/tanB
      ④a/sinA=b/sinB=c/sinC
      (3)锐角三角函数随角度的变化规律:
      锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。

    • 解直角三角形的应用:
      一般步骤是:
      (1)将实际问题抽象为数学问题(画图,转化为直角三角形的问题);
      (2)根据题目的条件,适当选择锐角三角函数等去解三角形;
      (3)得到数学问题的答案;
      (4)还原为实际问题的答案。

    • 解直角三角形的函数值列举:
      sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383
      sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
      sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087
      sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931
      sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐