如图所示,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)。(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(-九年级数学
题文
如图所示,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)。 (1)求抛物线的对称轴及k的值; (2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标; (3)点M是抛物线上的一动点,且在第三象限。 ①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标; ②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标。 |
答案
解:(1)抛物线的对称轴为:直线x=-1, ∵抛物线过点C(0,-3),则, ∴k=-4; |
|
(2)如图,根据两点之间线段最短可知,当P点在线段AC上就可使PA+PC的值最小,又因为P点要在对称轴上,所以P点应为线段AC与对称轴直线x=-1的交点, 由(1)可知,抛物线的表达式为:, 令y=0,则,解得:, 则点A、B的坐标分别是A(-3,0)、B(1,0), 设直线AC的表达式为y=kx+b, 则解得: 所以直线AC的表达式为y=-x-3, 当x=-1时,, 所以,此时点P的坐标为(-1,-2); |
|
(3)①依题意得: 当点M运动到抛物线的顶点时,△AMB的面积最大, 由抛物线表达式可知,抛物线的顶点坐标为(-1,-4), ∴点M的坐标为(-1,-4), △AMB的最大面积, ②如图,过点M作MH⊥x轴于点H,连结AM、MC、CB, 点M在抛物线上,且在第三象限,设点M的坐标为(), 则, 当时,四边形AMCB的面积最大,最大面积为, 当时, ∴四边形AMCB的面积最大时,点M的坐标为()。 |
据专家权威分析,试题“如图所示,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,..”主要考查你对 求二次函数的解析式及二次函数的应用,轴对称 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用轴对称
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |