如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点,交双曲线(k≥2)于E、F两点。(1)点E的坐标是______,点F的坐标是______;(均用含k的式子表示)(2)判断EF与AB的-九年级数学

。过反比例函数过一点,作垂线,三角形的面积为
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为

  • 不同象限分比例函数图像:


    常见画法:

  • 考点名称:平行线的判定

    • 平行线的概念
      在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
      注意:
      ①平行线是无限延伸的,无论怎样延伸也不相交。
      ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

    • 平行线的判定平行线的判定公理:
      (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
      (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
      (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
      还有下面的判定方法:
      (1)平行于同一条直线的两直线平行。
      (2)垂直于同一条直线的两直线平行。
      (3)平行线的定义。

      判定方法的逆应用:
      在同一平面内,两直线不相交,即平行。
      两条直线平行于一条直线,则三条不重合的直线互相平行。
      两直线平行,同位角相等。
      两直线平行,内错角相等。
      两直线平行,同旁内角互补。
      6a⊥c,b⊥c则a∥b。

    考点名称:相似三角形的性质

    • 相似三角形性质定理:
      (1)相似三角形的对应角相等。
      (2)相似三角形的对应边成比例。
      (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
      (4)相似三角形的周长比等于相似比。
      (5)相似三角形的面积比等于相似比的平方。
      (6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
      (7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
      (8)c/d=a/b 等同于ad=bc.
      (9)不必是在同一平面内的三角形里
      ①相似三角形对应角相等,对应边成比例.
      ②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
      ③相似三角形周长的比等于相似比

      定理推论:
      推论一:顶角或底角相等的两个等腰三角形相似。
      推论二:腰和底对应成比例的两个等腰三角形相似。
      推论三:有一个锐角相等的两个直角三角形相似。
      推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
      推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
      推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐