如图1,已知点B(1,3)、C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD。(1)填空:A点坐标为(____,____),D点坐标为(____,____);(2)若抛物线y=x-九年级数学

题文

如图1,已知点B(1,3)、C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD。
(1)填空:A点坐标为(____,____),D点坐标为(____,____);
(2)若抛物线y=x2+bx+c经过C、D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由。(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-,顶点坐标是(-

题型:解答题  难度:偏难

答案

解:(1) A(-2,0) ,D(-2,3);
(2)∵抛物线y=x2+bx+c 经过C(1,0),D(-2,3)代入,
解得:b=-,c=
∴所求抛物线解析式为:y=
(3)答:存在,
设抛物线向上平移H个单位能使EM∥x轴,则平移后的解析式为:y=x2-x++h =(x-1)2+h,
此时抛物线与y轴交点E(0,+h),
当点M在直线y=x+2上,且满足直线EM∥x轴时,
则点M的坐标为(),
又∵M在平移后的抛物线上,则有

解得:h=或h=
(i)当h=时,点E(0,2),点M的坐标为(0,2),
此时,点E,M重合,不合题意舍去;
(ii)当h=时,E(0,4)点M的坐标为(2,4)符合题意,
综合(i)(ii)可知,抛物线向上平移个单位能使EM∥x轴。

据专家权威分析,试题“如图1,已知点B(1,3)、C(1,0),直线y=x+k经过点B,且与x轴交于..”主要考查你对  求二次函数的解析式及二次函数的应用,二次函数的图像,轴对称,平移  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用二次函数的图像轴对称平移

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐