如图1,已知点B(1,3)、C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD。(1)填空:A点坐标为(____,____),D点坐标为(____,____);(2)若抛物线y=x-九年级数学


|a|越大,则二次函数图像的开口越小。

  • 决定对称轴位置的因素:
    一次项系数b和二次项系数a共同决定对称轴的位置。
    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

    决定与y轴交点的因素:

    常数项c决定二次函数图像与y轴交点。
    二次函数图像与y轴交于(0,C)
    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    与x轴交点个数:
    a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
    k=0时,二次函数图像与x轴只有1个交点。
    a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
    当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
    当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

  • 考点名称:轴对称

    • 轴对称的定义:
      把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

    • 轴对称的性质:
      (1)对应点所连的线段被对称轴垂直平分;
      (2)对应线段相等,对应角相等;
      (3)关于某直线对称的两个图形是全等图形。

    • 轴对称的判定:
      如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
      这样就得到了以下性质:
      1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
      2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
      3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
      4.对称轴是到线段两端距离相等的点的集合。

      轴对称作用:
      可以通过对称轴的一边从而画出另一边。
      可以通过画对称轴得出的两个图形全等。
      扩展到轴对称的应用以及函数图像的意义。

      轴对称的应用:
      关于平面直角坐标系的X,Y对称意义
      如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
      相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

      关于二次函数图像的对称轴公式(也叫做轴对称公式 )
      设二次函数的解析式是 y=ax2+bx+c
      则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

      在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
      譬如,等腰三角形经常添设顶角平分线;
      矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
      正方形,菱形问题经常添设对角线等等。
      另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
      或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

    考点名称:平移

    • 定义:
      将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

    • 平移基本性质:
      经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
      平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
      (1)图形平移前后的形状和大小没有变化,只是位置发生变化;
      (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
      (3)多次连续平移相当于一次平移。
      (4)偶数次对称后的图形等于平移后的图形。
      (5)平移是由方向和距离决定的。
      这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
      平移的条件:确定一个平移运动的条件是平移的方向和距离。

      平移的三个要点
      1 原来的图形的形状和大小和平移后的图形是全等的。
      2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
      3 平移的距离。(长度,如7厘米,8毫米等)

      平移作用:
      1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
      2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。

    • 平移作图的步骤:
      (1)找出能表示图形的关键点;
      (2)确定平移的方向和距离;
      (3)按平移的方向和距离确定关键点平移后的对应点;
      (4)按原图的顺序,连结各对应点。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐