已知,如图,过点E(0,-1)作平行于x轴的直线l,抛物线y=x2上的两点A、B的横坐标分别为-1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF。-九年级数学


常用勾股数组(3,4,5);(6,8,10);(5,12,13);(8,15,17) ;(7,24,25)
有关勾股定理书籍 :《数学原理》人民教育出版社;《探究勾股定理》同济大学出版社;《优因培教数学》北京大学出版社;《勾股书籍》新世纪出版社;《九章算术一书》《优因培揭秘勾股定理》江西教育出版社;《几何原本》(原著:欧几里得)人民日报出版社。

毕达哥拉斯树
毕达哥拉斯树是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的图形。又因为重复数次后 的形状好似一棵树,所以被称为毕达哥拉斯树。 
直角三角形两个直角边平方的和等于斜边的平方。两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。利用不等式A2+B2≥2AB可以证明下面的结论:三个正方形之间的三角形,其面积小于等于大正方形面积的四分之一,大于等于一个小正方形面积的二分之一。

考点名称:相似三角形的判定

  • 相似三角形:
    对应角相等,对应边成比例的两个三角形叫做相似三角形。
    互为相似形的三角形叫做相似三角形。

    例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'

  • 相似三角形的判定:
    1.基本判定定理
    (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
    (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
    (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
    (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
    2.直角三角形判定定理
    (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
    (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
    3.一定相似:
    (1).两个全等的三角形
    (全等三角形是特殊的相似三角形,相似比为1:1)
    (2).两个等腰三角形
    (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
    (3).两个等边三角形
    (两个等边三角形,三个内角都是60度,且边边相等,所以相似) 
    (4).直角三角形中由斜边的高形成的三个三角形。

  • 相似三角形判定方法:
    证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
    一、(预备定理)
    平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
    二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
    三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。 
    四、如果两个三角形的三组对应边成比例,那么这两个三角形相似
    五(定义)
    对应角相等,对应边成比例的两个三角形叫做相似三角形
    六、两三角形三边对应垂直,则两三角形相似。
    七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
    八、由角度比转化为线段比:h1/h2=Sabc

    易失误
    比值是一个具体的数字如:AB/EF=2
    而比不是一个具体的数字如:AB/EF=2:1

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐