如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为(5,),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以-九年级数学

题文

如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为(5,),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒。

(1)求∠BAO的度数。
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度。
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标。
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由。
题型:解答题  难度:偏难

答案

解:(1)
(2)点P的运动速度为2个单位/秒;
(3)


∴当时,S有最大值为
此时
(4)当点P沿这两边运动时,的点有2个
①当点P与点A重合时,
当点P运动到与点B重合时,的长是12单位长度
交y轴于点M,作轴于点H

所以
从而
所以当点P在AB边上运动时,的点P有1个。
②同理当点P在BC边上运动时,
可算得
而构成直角时交y轴于

所以
从而的点P也有1个
所以当点P沿这两边运动时,的点有2个。

据专家权威分析,试题“如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),..”主要考查你对  求二次函数的解析式及二次函数的应用,二次函数的图像,直角三角形的性质及判定,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用二次函数的图像直角三角形的性质及判定相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐