实验与探究:(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点-九年级数学

题文

实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是______,______;

(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);

归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______(不必证明);
运用与推广:
(4)在同一直角坐标系中有抛物线y=x2-(5c-3)x-c和三个点,H(2c,0)(其中c>0),问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标。
题型:解答题  难度:偏难

答案

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
解:(1)
(2)分别过点作轴的垂线,垂足分别为
分别过于E,于点F
在平行四边形中,
又∵


又∵


,由,得

(3)
(4)若为平行四边形的对角线,由(3)可得
要使在抛物线上
则有

(舍去),
此时
为平行四边形的对角线,由(3)可得
同理可得,此时
为平行四边形的对角线,由(3)可得
同理可得,此时
综上所述,当时,抛物线上存在点P,使得以为顶点的四边形是平行四边形
符合条件的点有
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点。(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求-九年级数学
如图,抛物线y=x2+bx+c与x轴
已知抛物线与x轴交于A(-1,0)和B(3,0)两点,且与y轴交于点C(0,3)。(1)求抛物线的解析式;(2)抛物线的对称轴方程和顶点M坐标;(3)求四边形ABMC的面积。-九年级数学
已知抛物线与x轴交于A(-1,
已知二次函数y=ax2+bx+c的图象经过(﹣1,﹣),B(0,﹣4),C(4,0)三点,则二次函数的解析式是(),顶点D的坐标是(),对称轴方程是().-九年级数学
已知二次函数y=ax2+bx+c的图
已知:在矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B,C重合),过F点的反比例函数(k>0)的图象与AC边-九年级数学
已知:在矩形AOBC中,OB=4,
已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式。-九年级数学
已知抛物线y=ax2+bx+c与x轴的
上一篇:连接上海市区到浦东国际机场的磁悬浮轨道全长约为30km,列车走完全程包含启动加速、匀速运行、制动减速三个阶段,已知磁悬浮列车从启动加速到稳定匀速动行共需200秒,在这段-九年级数学     下一篇:如图①,在边长为8cm正方形ABCD中,E,F是对角线AC上的两个动点,它们分别从点A,点C同时出发,沿对角线以1cm/s同速度运动,过E作EH垂直AC交的直角边于H;过F作FG垂直AC交Rt△-九年级数学
零零教育社区:论坛热帖子