如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D。(1)-九年级数学

题文

如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D。
(1)求l2的解析式;
(2)求证:点D一定在l2上;
(3)□ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由。注:计算结果不取近似值。

题型:解答题  难度:偏难

答案

解:(1)设l2的解析式为y=ax2+bx+c(a≠0),
∵l1与x轴的交点为A(-2,0),C(2,0),
顶点坐标是(0,-4),l2与l1关于x轴对称,
∴l2过A(-2,0),C(2,0),顶点坐标是(0,4),
,∴a=-1,b=0,c=4,
即l2的解析式为y=-x2+4;
(2)设点B(m,n)为l1:y=x2-4上任意一点,则n=m2-4(*)
∵四边形ABCD是平行四边形,点A、C关于原点O对称,
∴B、D关于原点O对称,
∴点D的坐标为D(-m,-n)
由(*)式可知,-n=-(m2-4)=-(-m)2+4,
即点D的坐标满足y=-x2+4,
∴点D在l2上;
(3)□ABCD能为矩形;
过点B作BH⊥x轴于H,由点B在l1:y=x2-4上,
可设点B的坐标为(x0,x02-4),
则OH=|x0|,BH=|x02-4|,
易知,当且仅当BO=AO=2时,□ABCD为矩形,
在Rt△OBH中,由勾股定理得,|x0|2+|x02-4|2=22,(x02-4)(x02-3)=0,
∴x0=±2(舍去)、x0
所以,当点B坐标为B(,-1)或B′(-,-1)时,□ABCD为矩形,
此时,点D的坐标分别是D(-,1)、D′(,1),
因此,符合条件的矩形有且只有2个,即矩形ABCD和矩形AB′CD′,
设直线AB与y轴交于E,显然,△AOE∽△AHB,


∴EO=4-2
由该图形的对称性知矩形ABCD与矩形AB′CD′重合部分是菱形,
其面积为S=2SΔACE=

据专家权威分析,试题“如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线..”主要考查你对  求二次函数的解析式及二次函数的应用,平行四边形的性质,矩形,矩形的性质,矩形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用平行四边形的性质矩形,矩形的性质,矩形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐