在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直线l2的函数表达式为,l1与l2相交于点P,⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a,过点C作C-九年级数学
题文
在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直线l2的函数表达式为,l1与l2相交于点P,⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a,过点C作CM⊥x轴,垂足是点M。 |
(1)填空:直线l1的函数表达式是____,交点P的坐标是____,∠FPB的度数是____; (2)当⊙C和直线l2相切时,请证明点P到直线CM的距离等于⊙C的半径R,并写出R=时a的值; (3)当⊙C和直线l2不相离时,已知⊙C的半径R=,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点),S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由。 |
答案
解:(1);;60°; (2)设⊙C和直线l2相切时的一种情况如图甲所示,D是切点,连接CD,则CD⊥PD, 过点P作CM的垂线PG,垂足为G,则Rt△CDP≌Rt△PGC(∠PCD=∠CPG=30°,CP=PC), 所以PG=CD=R, 当点C在射线PA上,⊙C和直线l2相切时,同理可证, 取R=-2时,a=1+R=-1,或a=-(R-1)=3-; (3)当⊙C和直线l2不相离时,由(2)知,分两种情况讨论: ①如图乙,当0≤a≤时, , 当a=时,(满足a≤),S有最大值,此时 ; ②当≤a<0时,显然⊙C和直线l2相切即时,S最大,此时 综合以上①和②,当a=3或时,存在S的最大值,其最大面积为。 |
据专家权威分析,试题“在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,),直..”主要考查你对 求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,全等三角形的性质,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离) 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用全等三角形的性质直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |