求方程x2+6xy-7y2=2009的正整数解.-数学
题文
求方程x2+6xy-7y2=2009的正整数解. |
答案
∵方程x2+6xy-7y2=2009, ∴(x-y)(x+7y)=2009, ∵2009=7×7×41, ∴当x-y=1,7,41,49,287,2009时,相应的有x+7y=2009,287,49,41,7,1, ∵x,y均是正整数,则x-y<x+7y, 故上述六种关系中,只有三种可能成立, (1)
(2)
(3)
解得(x,y)=(252,251),(42,35),(42,1)此即为方程的全部正整数解. |
据专家权威分析,试题“求方程x2+6xy-7y2=2009的正整数解.-数学-”主要考查你对 二元多次(二次以上)方程(组) 等考点的理解。关于这些考点的“档案”如下:
二元多次(二次以上)方程(组)
考点名称:二元多次(二次以上)方程(组)
定义:二元二次方程组即至少有一个二元二次方程的方程组,另一个是不高于二次的二元整式方程
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
二元二次方程组的一般解法是代入法:
在(1)中先将x看作常量,把(1)看作关于x的一元二次方程,用y表示x后,代入(2)中,得到关于y的方程。因为在解(1)的结果中,可能得到y是x的双值函数,所以可能得到两个方程,也可能得到无理方程,无理方程有理化后,最高可能得到四次方程,但仍有代数解。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |