方程2x2-xy-3x+y+2006=0的正整数解(x,y)共有______对.-数学
题文
方程2x2-xy-3x+y+2006=0的正整数解(x,y)共有______对. |
答案
2x2-xy-3x+y+2006=0, ∴-2x2+xy+2x+x-y=2006 ∴(2x-2x2)+(xy-y)+(x-1)=2006-1, ∴-2x(x-1)+y(x-1)+(x-1)=2005, ∴(x-1)(y+1-2x)=2005=5×401 当①x-1=1,y+1-2x=2005, 即(x,y)=(2,2008) 当②x-1=5,y+1-2x=401, 即(x,y)=(6,412) 当③x-1=401,y+1-2x=5, 即(x,y)=(402,808) 当④x-1=2005,y+1-2x=1, 即(x,y)=(2006,4012). 故答案为4对 |
据专家权威分析,试题“方程2x2-xy-3x+y+2006=0的正整数解(x,y)共有______对.-数学-魔方..”主要考查你对 二元多次(二次以上)方程(组) 等考点的理解。关于这些考点的“档案”如下:
二元多次(二次以上)方程(组)
考点名称:二元多次(二次以上)方程(组)
定义:二元二次方程组即至少有一个二元二次方程的方程组,另一个是不高于二次的二元整式方程
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
二元二次方程组的一般解法是代入法:
在(1)中先将x看作常量,把(1)看作关于x的一元二次方程,用y表示x后,代入(2)中,得到关于y的方程。因为在解(1)的结果中,可能得到y是x的双值函数,所以可能得到两个方程,也可能得到无理方程,无理方程有理化后,最高可能得到四次方程,但仍有代数解。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |