如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90。,∠1=40。,求∠2和∠3的度数.-七年级数学
题文
如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90。,∠1=40。, 求∠2和∠3的度数. |
答案
解:∠1=40。, ∠BOD=90。-40。=50。 ∠AOD=180。-50。=130。, ∠AOC与∠AOD互补, ∴∠3=50。, ∠2=∠AOD=65。 |
据专家权威分析,试题“如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90。,∠1=40。,..”主要考查你对 角平分线的定义 ,垂直的判定与性质 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 垂直的判定与性质
考点名称:角平分线的定义
- 角的平分线的定义:
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:垂直的判定与性质
- 垂线的定义:
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
垂直的判定:垂线的定义。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,OC平分∠AOB,若∠BOC=22°,则∠AOB=()。-七年级数学
下一篇:如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()。-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |