如图所示,已知AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F,且BE=CF,(1)AD是∠BAC的平分线;(2)AB=AC。-八年级数学
题文
如图所示,已知AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F,且BE=CF, |
(1)AD是∠BAC的平分线; (2)AB=AC。 |
答案
解:(1)∵AD是△ABC的中线 ∴BD=CD 在Rt△EBD和Rt△FCD中 ∴Rt△EBD≌Rt△FCD(HL) ∴DE=DF(全等三角形的对应边相等) 在Rt△AED和Rt△AFD中 ∴Rt△AED≌Rt△AFD(HL) ∴∠1=∠2(全等三角形的对应角相等) 即AD是∠BAC的平分线; (2)∵Rt△AED≌Rt△AFD(已证) ∴AE=AF(全等三角形的对应边相等) 又∵BE=CF(已知) ∴AB=AC。 |
据专家权威分析,试题“如图所示,已知AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F,且BE=CF,(..”主要考查你对 角平分线的定义 ,全等三角形的性质 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 全等三角形的性质
考点名称:角平分线的定义
- 角的平分线的定义:
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:全等三角形的性质
- 全等三角形:
两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。 全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |