如图所示,已知AB∥CD,BD平分∠ABC交AC于O,CE平分∠DCG.若∠ACE=90°,请判断BD与AC的位置关系,并说明理由.-数学
题文
如图所示,已知AB∥CD,BD平分∠ABC交AC于O,CE平分∠DCG.若∠ACE=90°,请判断BD与AC的位置关系,并说明理由. |
题文
如图所示,已知AB∥CD,BD平分∠ABC交AC于O,CE平分∠DCG.若∠ACE=90°,请判断BD与AC的位置关系,并说明理由. |
题型:解答题 难度:中档
答案
BD⊥AC.理由如下: ∵AB∥CD, ∴∠ABC=∠DCG, ∵BD平分∠ABC交AC于O,CE平分∠DCG, ∴∠ABD=
∴∠ABD=∠DCE; ∵AB∥CD, ∴∠ABD=∠D, ∴∠D=∠DCE, ∴BD∥CE, 又∠ACE=90°, ∴BD⊥AC. |
据专家权威分析,试题“如图所示,已知AB∥CD,BD平分∠ABC交AC于O,CE平分∠DCG.若∠ACE=90..”主要考查你对 角平分线的定义 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义
考点名称:角平分线的定义
角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |