已知是一个直角,在角的内部作射线,再分别作和的平分线、.(1)如图①,当时,则求的度数;(2)如图②,当射线在内绕点旋转时,的大小是否发生变化?若变化,说明理由;若不变,求-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-04 / 加入收藏 / 阅读 [打印]

题文

已知是一个直角,在角的内部作射线,再分别作 的平分线

(1)如图①,当时,则求的度数;
(2)如图②,当射线内绕点旋转时,的大小是否发生变化?若变化,说明理由;若不变,求的度数.

题型:解答题  难度:中档

答案

(1)45°;(2)45°


试题分析:(1)由AO⊥OB得∠AOB=90°,而∠BOC=60°,则∠AOC=∠AOB-∠BOC=30°,根据角平分线的性质得到∠COE=∠BOC=30°,∠DOC=∠AOC=15°,即可求得结果;
(2)由于∠COE=∠BOC,∠DOC=∠AOC,则∠DOE=∠COE+∠COD=(∠BOC+∠AOC),得到∠DOE=∠AOB,即可计算出∠DOE的度数.
(1)∵AO⊥OB,
∴∠AOB=90°
又∵∠BOC=60°
∴∠AOC=∠AOB-∠BOC=90°-60°=30°
又∵OD、OE分别平分∠AOC和∠BOC,
∴∠COE=∠BOC=30°,∠DOC=∠AOC=15°,
∴∠DOE=∠COD+∠COE=30°+15°=45°;
(2)∠DOE的大小不变,等于45°.理由如下:
∵AO⊥OB,
∴∠AOB=90°
∵OD、OE分别平分∠AOC和∠BOC.
∴∠COE=∠BOC,∠DOC=∠AOC,
∴∠DOE=∠COE+∠COD=(∠BOC+∠AOC)=∠AOB=×90°=45°.
点评:解答本题的关键是熟练掌握角的平分线把角分成大小相等的两个小角,且都等于大角的一半;注意本题要有整体意识.

据专家权威分析,试题“已知是一个直角,在角的内部作射线,再分别作和的平分线、.(1)如..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐