如图,直线AC∥BD,连结AB,直线AC、BD把之间的平面分成①、②两个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB构成∠PAC、∠APB、∠PBD三个角.(1)当动点-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-04 / 加入收藏 / 阅读 [打印]

题文

如图,直线AC∥BD,连结AB,直线AC、BD把之间的平面分成①、②两个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB构成∠PAC、∠APB、∠PBD三个角.

(1)当动点P落在第①部分时,试说明:∠APB=∠PAC+∠PBD;(提示:过点P作直线与AC平行)
(2)当动点P落在第②部分时,请画出相应的图形.试探究∠APB、∠PAC、∠PBD之间的数量关系,并说明理由.

题型:解答题  难度:中档

答案

(1)作PQ∥AC,则 PQ∥AC∥BD,根据平行线的性质可得∠APQ﹦∠CAP,∠BPQ﹦∠DPB,即可得到∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD;(2)∠APB+∠APC+∠PBD=360°


试题分析:(1)作PQ∥AC,则 PQ∥AC∥BD,根据平行线的性质可得∠APQ﹦∠CAP,∠BPQ﹦∠DPB,即可得到∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD;
(2)根据平行线的性质可得∠APQ+∠PAC=180°,∠QPB+∠PBD=180°,即可得到结果.
(1)作PQ∥AC,则 PQ∥AC∥BD

∴∠APQ﹦∠CAP,∠BPQ﹦∠DPB
∴∠APB﹦∠APQ+∠BPQ﹦∠PAC+∠PBD
(2)∠APB+∠APC+∠PBD=360°

∵PQ∥AC∥BD 
∴∠APQ+∠PAC=180°,∠QPB+∠PBD=180°
∴∠APB+∠APC+∠PBD=360°.
点评:解题的关键是读懂题意及图形,正确作出辅助线,同时熟练掌握两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补.

据专家权威分析,试题“如图,直线AC∥BD,连结AB,直线AC、BD把之间的平面分成①、②两个部..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐