完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:证明:∵∠1=∠2(已知),且∠1=∠CGD(_______________________),∴∠2=∠CGD(等量代换).∴CE∥BF(__________________-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-04 / 加入收藏 / 阅读 [打印]

题文

完成下面推理过程:

如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
证明 :∵∠1 =∠2(已知),且∠1 =∠CGD(______________    _________),
∴∠2 =∠CGD(等量代换).
∴CE∥BF(___________________    ________).
∴∠      =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠        =∠B(           ).
∴AB∥CD(________________________________).

题型:解答题  难度:偏易

答案

对顶角相等;同位角相等,两直线平行;∠HFD;两直线平行,同位角相等;∠HFD;等量代换;内错角相等,两直线平行


试题分析:根据平行线的判定和性质依次分析即可得到结果.
∵∠1 =∠2(已知),且∠1 =∠CGD(对顶角相等),
∴∠2 =∠CGD(等量代换).
∴CE∥BF(同位角相等,两直线平行).
∴∠HFD=∠C(两直线平行,同位角相等).
又∵∠B =∠C(已知),
∴∠HFD=∠B(等量代换).
∴AB∥CD(内错角相等,两直线平行).
点评:平行线的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.

据专家权威分析,试题“完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐