在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每-七年级数学
题文
在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒. (1)当点P移动到点D时,求出此时t的值; (2)当t为何值时,△PQB为直角三角形; (3)已知过O、P、Q三点的抛物线解析式为(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由. |
答案
(1)2(2)当t=2或或时,△PQB为直角三角形(3)存在t=或t=2,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上 |
解:(1)∵四边形OABC是矩形,∴∠AOC=∠OAB=90°。 ∵OD平分∠AOC,∴∠AOD=∠DOQ=45°。 ∴在Rt△AOD中,∠ADO=45°。∴AO=AD=2,OD=2。 ∵点P的速度为每秒个单位长度,∴t=(秒)。 (2)要使△PQB为直角三角形,显然只有∠PQB=90°或∠PBQ=90°, 如图,作PG⊥OC于点G,在Rt△POG中, ∵∠POQ=45°,∴∠OPG=45°。 ∵OP=t,∴OG=PG=t。∴点P(t,t)。 又∵Q(2t,0),B(6,2), 根据勾股定理可得: 。 ①若∠PQB=90°,则有PQ2+BQ2=PB2,即: , 整理得:4t2﹣8t=0,解得:t1=0(舍去),t2=2,∴t=2。 ②若∠PBQ=90°,则有PB2+QB2=PQ2,即: , 整理得:t2﹣10t+20=0,解得:。 ∴当t=2或或时,△PQB为直角三角形。 (3)存在这样的t值。理由如下: 将△PQB绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ中点,此时四边形PBQB′为平行四边形。 ∵PO=PQ,由P(t,t),Q(2t,0),知旋转中心坐标可表示为(t, t)。 ∵点B坐标为(6,2),∴点B′的坐标为(3t﹣6,t﹣2)。 代入,得:2t2﹣13t+18=0,解得:t1=,t2=2。 ∴存在t=或t=2,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上。 (1)首先根据矩形的性质求出DO的长,进而得出t的值。 (2)要使△PQB为直角三角形,显然只有∠PQB=90°或∠PBQ=90°,进而利用勾股定理分别分析得出,再分别就∠PQB=90°和∠PBQ=90°讨论,求出符合题意的t值即可。 (3)存在这样的t值,若将△PQB绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ中点,此时四边形PBQB′为平行四边形,根据平行四边形的性质和对称性可求出t的值。 |
据专家权威分析,试题“在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OAB..”主要考查你对 点、线、面、体 等考点的理解。关于这些考点的“档案”如下:
点、线、面、体
考点名称:点、线、面、体
- 点动成线,线动成面,面动成体:
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体。
包围着体的是面,面有平的面和曲的面两种。
夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线。
天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。 - 常见几何体的三视图:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |