小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点-七年级数学
题文
小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F. (1)如图①,M为边AC上一点,则BD、MF的位置关系是 ; 如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是 ; 如图③,M为边AC延长线上一点,则BD、MF的位置关系是 ; (2)请就图①、图②、或图③中的一种情况,给出证明. 我选图 来证明. |
答案
(1)BD∥MF,BD⊥MF,BD⊥MF;(2)证明见解析. |
试题分析:(1)①根据题意知∠AME+∠ABC=180°,再利用角平分线的性质得∠AMF+∠ABD=90°,而∠AMF+∠AFM=90°,从而∠AFM=∠ABD,即BD∥MF; ②易证∠AME=∠ABC,由MF、BD分别是∠AME、∠ABC的平分线,可知∠AMF=∠ABD.而∠ABD+∠ADB=90°,所以∠AMF+∠ADB=90°,故BD⊥MF; ③方法同(2); (2)分析同(1). (1)BD∥MF,BD⊥MF,BD⊥MF; (2)(1)BD∥MF 理由如下:∵∠A=90°,ME⊥BC, ∴∠ABC+∠AME=360°﹣90°×2=180°, ∵BD平分∠ABC,MF平分∠AME, ∴∠ABD=∠ABC,∠AMF=∠AME, ∴∠ABD+∠AMF=(∠ABC+∠AME)=90°, 又∵∠AFM+∠AMF=90°, ∴∠ABD=∠AFM, ∴BD∥MF; (2)BD⊥MF. 理由如下:∵∠A=90°,ME⊥BC, ∴∠ABC+∠C=∠AME+∠C=90°, ∴∠ABC=∠AME, ∵BD平分∠ABC,MF平分∠AME, ∴∠ABD=∠AMF, ∵∠ABD+∠ADB=90°, ∴∠AMF+∠ADB=90°, ∴BD⊥MF; (3)BD⊥MF. 理由如下:∵∠A=90°,ME⊥BC, ∴∠ABC+∠ACB=∠AME+∠ACB=90°, ∴∠ABC=∠AME, ∵BD平分∠ABC,MF平分∠AME, ∴∠ABD=∠AMF, ∵∠AMF+∠F=90°, ∴∠ABD+∠F=90°, ∴BD⊥MF |
据专家权威分析,试题“小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠..”主要考查你对 点、线、面、体 等考点的理解。关于这些考点的“档案”如下:
点、线、面、体
考点名称:点、线、面、体
- 点动成线,线动成面,面动成体:
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体。
包围着体的是面,面有平的面和曲的面两种。
夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线。
天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。 - 常见几何体的三视图:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,已知AB∥CD的角∠CAB、∠ACD平分线交于点E,则∠AEC的度数为°-七年级数学
下一篇:如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B的度数为()A.18°B.36°C.45°D.54°-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |