小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-05 / 加入收藏 / 阅读 [打印]

题文

小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.
(1)如图①,M为边AC上一点,则BD、MF的位置关系是             
如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是            
如图③,M为边AC延长线上一点,则BD、MF的位置关系是               
(2)请就图①、图②、或图③中的一种情况,给出证明.
我选图     来证明.

 

题型:解答题  难度:中档

答案

(1)BD∥MF,BD⊥MF,BD⊥MF;(2)证明见解析.


试题分析:(1)①根据题意知∠AME+∠ABC=180°,再利用角平分线的性质得∠AMF+∠ABD=90°,而∠AMF+∠AFM=90°,从而∠AFM=∠ABD,即BD∥MF;
②易证∠AME=∠ABC,由MF、BD分别是∠AME、∠ABC的平分线,可知∠AMF=∠ABD.而∠ABD+∠ADB=90°,所以∠AMF+∠ADB=90°,故BD⊥MF;
③方法同(2);
(2)分析同(1).
(1)BD∥MF,BD⊥MF,BD⊥MF;
(2)(1)BD∥MF
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠AME=360°﹣90°×2=180°,
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠ABC,∠AMF=∠AME,
∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,
又∵∠AFM+∠AMF=90°,
∴∠ABD=∠AFM,
∴BD∥MF;
(2)BD⊥MF.
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠C=∠AME+∠C=90°,
∴∠ABC=∠AME,
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠AMF,
∵∠ABD+∠ADB=90°,
∴∠AMF+∠ADB=90°,
∴BD⊥MF;
(3)BD⊥MF.
理由如下:∵∠A=90°,ME⊥BC,
∴∠ABC+∠ACB=∠AME+∠ACB=90°,
∴∠ABC=∠AME,
∵BD平分∠ABC,MF平分∠AME,
∴∠ABD=∠AMF,
∵∠AMF+∠F=90°,
∴∠ABD+∠F=90°,
∴BD⊥MF

据专家权威分析,试题“小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐