问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的-九年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-05 / 加入收藏 / 阅读 [打印]

题文

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:                                                        
依据2:                                                        
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

题型:解答题  难度:偏难

答案

(1)依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等;
(2)见解析;
(3)OM=ON,OM⊥ON.理由见解析.


试题分析:(1)根据等腰三角形的性质和角平分线性质得出即可;
(2)证△OMA≌△ONB(AAS),即可得出答案;
(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC-∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.
(1)解:依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等.
(2)证明:∵CA=CB,
∴∠A=∠B,
∵O是AB的中点,
∴OA=OB.
∵DF⊥AC,DE⊥BC,
∴∠AMO=∠BNO=90°,
∵在△OMA和△ONB中
 ,
∴△OMA≌△ONB(AAS),
∴OM=ON. 
(3)解:OM=ON,OM⊥ON.理由如下:
如图2,连接OC,
∵∠ACB=∠DNB,∠B=∠B,
∴△BCA∽△BND,

∵AC=BC,
∴DN=NB.
∵∠ACB=90°,
∴∠NCM=90°=∠DNC,
∴MC∥DN,
又∵DF⊥AC,
∴∠DMC=90°,
即∠DMC=∠MCN=∠DNC=90°,
∴四边形DMCN是矩形,
∴DN=MC,
∵∠B=45°,∠DNB=90°,
∴∠3=∠B=45°,
∴DN=NB,
∴MC=NB,
∵∠ACB=90°,O为AB中点,AC=BC,
∴∠1=∠2=45°=∠B,OC=OB(斜边中线等于斜边一半),
在△MOC和△NOB中
 ,
∴△MOC≌△NOB(SAS),
∴OM=ON,∠MOC=∠NOB,
∴∠MOC-∠CON=∠NOB-∠CON,
即∠MON=∠BOC=90°,
∴OM⊥ON.

据专家权威分析,试题“问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐