如图所示,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠DOE之间具有怎样的数量关系,并证明你的猜想结论.-数学

题文

如图所示,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠DOE之间具有怎样的数量关系,并证明你的猜想结论.

题型:解答题  难度:中档

答案

∠C+∠DOE=180°.
∵AD,BE是△ABC的高(已知),
∴∠AEO=∠ADC=90°(高的意义),
∵∠DOE是△AOE的外角(三角形外角的概念),
∴∠DOE=∠OAE+∠AEO(三角形的一个外角等于不相邻的两个内角的和)
=∠OAE+90°(∠AEO=90°)
=∠OAE+∠ADC(∠ADC=90°)
∴∠C+∠DOE=∠OAE+∠C+∠ADC=90°+90°=180°.
另法:在四边形CEOD中,∠C+∠EOD+90°+90°=360°,
则∠C+∠EOD=180°.

据专家权威分析,试题“如图所示,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠..”主要考查你对  三角形的内角和定理,三角形的外角性质  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理三角形的外角性质

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

考点名称:三角形的外角性质

  • 三角形的外角
    三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

    ∠1是三角形的外角。

  • 三角形的外角特征:
    ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
    ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
    ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
     
    性质:
    ①. 三角形的外角与它相邻的内角互补。
    ②. 三角形的一个外角等于和它不相邻的两个内角的和。
    ③. 三角形的一个外角大于任何一个和它不相邻的内角。
    ④. 三角形的外角和等于360°。
    设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

    定理:三角形的一个外角等于不相邻的两个内角和。
    定理:三角形的三个内角和为180度。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐