用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有______.-数学

题文

用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有 ______.
题型:填空题  难度:中档

答案

设摆出的三角形的三边有两边是x根,y根,则第三边是(12-x-y)根,
根据三角形的三边关系定理得到:
x<6,y<6,x+y>6,
又因为x,y是整数,
因而同时满足以上三式的x,y的分别值是(不计顺序):2,5;3,4;3,5;4,4;4,5;5,5.
则第三边对应的值是:5;5;4;4;3;2.
因而三边的值可能是:2,5,5;或3,4,5;或4,4,4共三种情况,
则能摆出不同的三角形的个数是3.

据专家权威分析,试题“用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐