阅读以下材料并填空.平面上有n个点(n≥2),且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?试探究以下问题:平面上有n(n≥3)个点,任意三个点不在-数学
题文
阅读以下材料并填空. 平面上有n个点(n≥2),且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线? 试探究以下问题:平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形? (1)分析:当仅有两个点时,可连成1条直线;当仅有3个点时,可作______条直线;当有4个点时,可作______条直线;当有5个点时,可作______条直线; (2)归纳:考察点的个数n和可作出的直线的条数Sn,发现:(填下表)
(4)结论:______. |
答案
(1)分析:当仅有两个点时,可连成1条直线;当有3个点时, 可连成3.条直线;当有4个点时,可连成6条直线; 当有5个点时,可连成1O条直线; (2)归纳:考察点的个数n和可连成直线的条数Sn,发现:
过第二个点B有(n-1)条直线,所以一共可连成n(n-1)条直线, 但AB与BA是同一条直线,故应除以2,即Sn=
(4)结论:Sn=
|
据专家权威分析,试题“阅读以下材料并填空.平面上有n个点(n≥2),且任意三个点不在同一条..”主要考查你对 三角形的内角和定理 等考点的理解。关于这些考点的“档案”如下:
三角形的内角和定理
考点名称:三角形的内角和定理
- 三角形的内角和定理及推论:
三角形的内角和定理:三角形三个内角和等于180°。
推论:
(1)直角三角形的两个锐角互余。
(2)三角形的一个外角等于和它不相邻的来两个内角的和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:已知三角形中两角之和为n,最大角比最小角大24°,求n的取值范围.-数学
下一篇:已知△ABC中,∠B=60°,∠C>∠A,且(∠C)2=(∠A)2+(∠B)2,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |