如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.
(1)求A、B两点的坐标;
(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.
题型:解答题  难度:中档

答案

(1)连接AD,设点A的坐标为(a,0),
由图2知,DO+OA=6cm,则DO=6-AO=6-a,
由图2知S△AOD=4,
1
2
DO?AO=
1
2
a(6-a)=4,
整理得:a2-6a+8=0,
解得a=2或a=4,
由图2知,DO>3,
∴AO<3,
∴a=2,
∴A的坐标为(2,0),
D点坐标为(0,4),
在图1中,延长CB交x轴于M,
由图2,知AB=5cm,CB=1cm,
∴MB=3,
∴AM=

AB2-MB2
=4.
∴OM=6,
∴B点坐标为(6,3);

(2)因为P在OA、BC、CD上时,直线PD都不能将五边形OABCD分成面积相等的两部分,
所以只有点P一定在AB上时,才能将五边形OABCD分成面积相等的两部分,
设点P(x,y),连PC、PO,则
S四边形DPBC=S△DPC+S△PBC=
1
2
S五边形OABCD=
1
2
(S矩形OMCD-S△ABM)=9,
1
2
×6×(4-y)+
1
2
×1×(6-x)=9,
即x+6y=12,
同理,由S四边形DPAO=9可得2x+y=9,

x+6y=12
2x+y=9

解得x=
42
11
,y=
15
11

∴P(
42
11
15
11
),
设直线PD的函数关系式为y=kx+4(k≠0),
15
11
=
42
11
k+4,
∴k=-
29
42

∴直线PD的函数关系式为y=-
29
42
x+4.

据专家权威分析,试题“如图1,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐