已知a=2004x+2005,b=2004x+2006,c=2004x+2007,求多项式a2+b2+c2-ab-bc-ca的值.-数学

题文

已知a=2004x+2005,b=2004x+2006,c=2004x+2007,求多项式a2+b2+c2-ab-bc-ca的值.
题型:解答题  难度:中档

答案

由题意可知a-b=-1,b-c=-1,a-c=-2
所求式=
1
2
(2a2+2b2+2c2-2ab-2bc-2ca)
=
1
2
[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]
=
1
2
[(a-b)2+(b-c)2+(a-c)2]
=
1
2
[(-1)2+(-1)2+(-2)2]=3.

据专家权威分析,试题“已知a=2004x+2005,b=2004x+2006,c=2004x+2007,求多项式a2+b2+..”主要考查你对  整式的加减乘除混合运算  等考点的理解。关于这些考点的“档案”如下:

整式的加减乘除混合运算

考点名称:整式的加减乘除混合运算

  • 加法、减法、乘法和除法,统称为四则运算。
    其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
    注意运算顺序,先做乘方,再做乘除,最做加减运算,如果有同类项,就合并同类项,要求结果必须是最简形式。

  • 基本运算顺序:
    只有一级运算时,从左到右计算;
    有两级运算时,先乘除,后加减。
    有括号时,先算括号里的;
    有多层括号时,先算小括号里的。
    要是有平方,先算平方。
    在混合运算中,先算括号内的数,括号从小到大,然后从高级到低级。