设a、b、c均不为0,且a+b+c=1998,1a+1b+1c=11998,求证:a、b、c中至少有一个等于1998.-数学

题文

设a、b、c均不为0,且a+b+c=1998,
1
a
+
1
b
+
1
c
=
1
1998
,求证:a、b、c中至少有一个等于1998.
题型:解答题  难度:中档

答案

证明:
∵a+b+c=1998,
1
a
+
1
b
+
1
c
=
1
1998

1
a
+
1
b
+
1
c
=
1
a+b+c
?
ab+bc+ac
abc
=
1
a+b+c
?(ab+bc+ac)(a+b+c)=abc?(a+b)(ab+bc+ac)+(ab+bc+ac)c=abc?(a+b)(ab+bc+ac)+abc+c(bc+ac)=abc?(a+b)(ab+bc+ac)+c2(a+b)=0?(a+b)(ab+bc+ac+c2)=0?(a+b)[b(a+c)+c(a+c)]=0?(a+b)(a+b)(a+c)=0
∴a+b,b+c,c+a中必有一个为0
∴a、b、c中至少有一个等于1998

据专家权威分析,试题“设a、b、c均不为0,且a+b+c=1998,1a+1b+1c=11998,求证:a、b、c..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。